Eléments de correction du livret de révision de mathématiques à l'attention des élèves entrant en première

Exercice 1

$$Df =]-\infty$$
; 6]. $f(5) = 1.5$ et $f(0) = -2$.

$$f(x) = -2 \text{ ssi } x = -7 \text{ ou } x = 0 \text{ ou } x = 3.$$

$$f(x) < 3 \text{ ssi } x \in]-\infty; -4.5[\cup]-2; 6]$$

f est croissante sur [-7; -3], puis décroissante sur [-3; 2], puis croissante sur [2; 6].

٠.	000000	nooan	to oa. [, , o], p	3410 400101	ocarito car [
	x	-∞	-3	2	6
	f(x)	/	*	\ _3 /	3

Le maximum de la fonction f est 4, il est atteint en x = -3.

La fonction f n'admet aucun minimum.

	tion i ii damot adoan iiiiiiiiiiiii.										
x	-8		-6		-1		4		6		
g(x)		-	0	+	0	-	0	+			

$$y = \frac{-1}{2}\overline{x - \frac{1}{2}}$$

$$f(x) = g(x)$$
 ssi $x = -5$ ou $x = -1$ ou $x = 3$

$$f(x) < g(x)$$
 ssi $x \in]-\infty; -5[\cup]-1; 3[$

Exercice 2

a)
$$Df =]-\infty$$
; $3[\cup]3$; $+\infty[$

b)
$$f(-4) = 2$$
 $f(5,5) = -2$

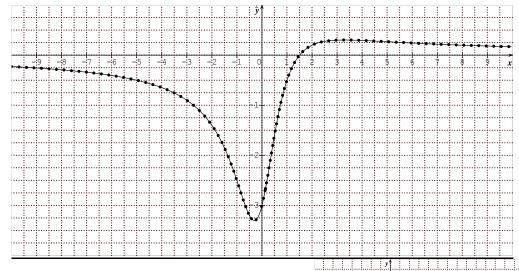
\mathbf{D}_{I}		J	(3)	,, –	4							
c) $f(x) =$	2 ssi 2	c = -	-4 oı	5		d)		e))			
	x	-00)		-2	2		3	3			+∞
	f(x)				→ 4	/	_	→		/	<u></u>	*
	х	-∞		-5		2		3		4,5		+∞
	f(x)		-	0	+	0	-		+	0	-	

Exercice 3

a)
$$D = [-10; 10]$$

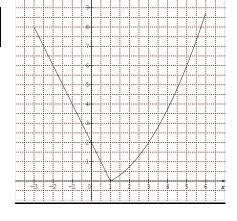
b)
$$f(-5) = 0.5$$
 et $f(3)=1.30$

c) -1 a deux antécédents.



-	- VCI CIC	, , ,									
	x	-3	-2	-1	0	1	2	3	4	5	6
	f(x)	8	6	4	2	0	0,75	2	3,75	4	8,75

$$D = [-5; 4]$$



$$A(x) = (x+2)(2x+3) = 2x^2 + 3x + 4x + 6 = 2x^2 + 7x + 6$$

$$B(x) = (2x - 3)^2 = 4x^2 - 12x + 9$$

$$C(x) = (5x - 3)(2x + 4) - (5x - 3)(3x + 2) = [10x^{2} + 20x - 6x - 12] - [15x^{2} + 10x - 9x - 6]$$

$$C(x) = 10x^2 + 14x - 12 - 15x^2 - x + 6 = -5x^2 + 13x - 6$$

$$D(x) = (3x+1)^2 - (4x+1)^2 = [9x^2 + 6x + 1] - [16x^2 + 8x + 1]$$

$$D(x) = 9x^2 + 6x + 1 - 16x^2 - 8x - 1 = -7x^2 - 2x$$

Exercice 6

$$A(x) = 3(x-5)^2 + (x-5)(2x+1) = (x-5)(3x-15+2x+1) = (x-5)(5x-14)$$

$$B(x) = 4x^2 - 1 = (2x - 1)(2x + 1)$$

$$C(x) = (3x - 4)^2 + 5(4 - 3x) = (3x - 4)^2 - 5(3x - 4) = (3x - 4)(3x - 4 - 5) = (3x - 4)(3x - 9)$$

$$D(x) = x^2 - 2x + 1 = (x - 1)^2$$

$$E(x) = 4x^2 + 4x\sqrt{3} = 4x(x + \sqrt{3})$$

$$F(x) = (2x+3)^2 - (5x-1)^2 = (2x+3-5x+1)(2x+3+5x-1) = (4-3x)(7x+2)$$

$$G(x) = (x-1)(x+2)^2 + (x-1)(x+1)(x+2) = (x-1)(x+2)(x+2+x+1)$$

= $(x-1)(x+2)(2x+3)$

$$H(x) = 5x^3 - 2x^2 + 5x = x(5x^2 - 2x + 5)$$

Exercice 7

$$(2x-3)(5x-1)(x^2+1) = 0 \Leftrightarrow 2x-3 = 0 \text{ ou } 5x-1 = 0 \text{ ou } x^2+1 = 0 \Leftrightarrow x = \frac{3}{2} \text{ ou } x = \frac{1}{5}$$

$$\underline{\mathsf{Donc}} \ \ S = \{\frac{3}{2} \ ; \ \frac{1}{5}\}$$

$$\frac{-1}{2}(2x-3)^2 = 0 \iff 2x-3 = 0 \iff x = \frac{3}{2}$$

$$\frac{\mathsf{Donc}}{\mathsf{Donc}}S = \{\frac{3}{2}\}$$

$$x^2 + 5x = 0 \Leftrightarrow x(x+5) = 0 \Leftrightarrow x = 0 \text{ ou } x = -5$$

Donc
$$S = \{0; 5\}$$

$$(2x+3)^2 - (5x+7)^2 = 0 \Leftrightarrow (2x+3-5x-7)(2x+3+5x+7) = 0 \Leftrightarrow (-3x-4)(7x+10) = 0$$

$$\Leftrightarrow -3x-4 = 0 \text{ ou } 7x+10 = 0 \Leftrightarrow x = \frac{-4}{3} \text{ ou } x = \frac{-10}{7}$$

Donc
$$S = \{\frac{-4}{3}; \frac{-10}{7}\}$$

$$4x^{2} - 9 = (x+2)(2x+3) \Leftrightarrow (2x+3)(2x-3) - (x+2)(2x+3) = 0 \Leftrightarrow (2x+3)(2x-3-x-2) = 0$$
$$\Leftrightarrow (2x+3)(x-5) = 0 \Leftrightarrow 2x+3 = 0 \text{ ou } x-5 = 0 \Leftrightarrow x = \frac{-3}{2} \text{ ou } x = 5$$

$$\underline{\mathsf{Donc}}\,S = \{ \frac{-3}{2} \; ; \; 5 \}$$

Exercice 8

$$A = \frac{-4x+11}{x-2}$$
 $B = \frac{3x-1}{x+1}$

$$C = \frac{-x-4}{x(x-1)}$$

$$A = \frac{-4x+11}{x-2} \qquad B = \frac{3x-1}{x+1} \qquad C = \frac{-x-4}{x(x-1)} \qquad D = \frac{3x^2-13x+6}{(x-4)^2} \quad E = \frac{8x^2-15x+5}{x(x-1)^2}$$

a)
$$\frac{4x-3}{(2x+1)^2} = 0$$
 $VI: \frac{-1}{2}$
 $\Leftrightarrow 4x-3 = 0 \text{ et } (2x+1)^2 \neq 0$
 $S = \{\frac{3}{4}\}$

b)
$$\frac{1}{x-3} - \frac{x+2}{2x-6} = \frac{1}{2} VI: 3$$

 $\Leftrightarrow \frac{2}{2x-6} - \frac{x+2}{2x-6} = \frac{x-3}{2x-6} \Leftrightarrow 2-x-2-x+3 = 0 \text{ et } 2x-6 \neq 0$

$$\Leftrightarrow -2x = -3 \text{ et } x \neq 3 \Leftrightarrow x = \frac{3}{2} \text{ et } x \neq 3$$

$$S = \{\frac{3}{2}\}$$

c)
$$\frac{x}{x+1} + \frac{1}{2x} = 1 \text{ VI} : 0 : -1$$

$$\Leftrightarrow \frac{2x^2}{2x(x+1)} + \frac{x+1}{2x(x+1)} = \frac{2x^2 + 2x}{2x(x+1)} \Leftrightarrow x+1 = 2x \text{ et } x \neq 0 \text{ et } x \neq -1$$

$$\Leftrightarrow 1 = x \text{ et } x \neq 0 \text{ et } x \neq -1$$

$$S = \{1\}$$

d)
$$\frac{2x+3}{x-2} = \frac{x+3}{x-1} VI : 2 ; 1$$

 $\Leftrightarrow (2x+3)(x-1) = (x+3)(x-2) \Leftrightarrow 2x^2 + x - 3 = x^2 + x - 6 \Leftrightarrow x^2 = -3.$
 $S = \emptyset$

a)
$$3(5x - \sqrt{2}) + 2 \ge x + 3\sqrt{2} \iff 15x - 3\sqrt{2} + 2 \ge x + 3\sqrt{2} \iff 14x \ge 6\sqrt{2} - 2 \iff x \ge \frac{3\sqrt{2} - 1}{7}$$

$$S = \left[\frac{3\sqrt{2}-1}{7} ; +\infty\right[$$

b)
$$S =] - 17$$
; $+\infty[$

a)
$$(3x - 1)(x + 4) < 0$$

 $3x - 1 = 0 \Leftrightarrow x = \frac{1}{3}$
 $x + 4 = 0 \Leftrightarrow x = -4$
 $S =] - 4; \frac{1}{3}[$

$b) \frac{-2x+7}{x-3} \ge 0$
$-2x + 7 = 0 \Leftrightarrow x = \frac{7}{2}$
$x - 3 = 0 \Leftrightarrow x = 3$
$S =]3; \frac{7}{2}]$

c) $(4x-1)^2-9>0$
(4x - 1 - 3)(4x - 1 + 3) > 0
(4x - 4)(4x + 2) > 0
4x - 4 = 0 si x = 1
$4x + 2 = 0 \text{ si } x = \frac{-1}{2}$
-1 1

x		$\frac{-1}{2}$		1	
4x - 4	-		-	0	+
4x + 2	-	0	+		+
P(x)	+	0	-	0	+

$(4x-1)^2-9>0 \text{ ssi } x \in]-\infty;$	$\frac{-1}{2}[U]1; +\infty[$
---	------------------------------

x	-∞		-4		1 3		+∞
3x - 1		-		-	0	+	
x + 4		-	0	+		+	
(3x-1)(x+4)		+	0	-	0	+	

х	-∞		3		7 2		+∞
-2x + 7		+		+	0	-	
x-3		-	0	+		+	
$\frac{-2x+7}{x-3}$		-		+	0	-	

d)
$$\frac{x-3x^2}{x+2} \le 0$$
 VI: -2 $\frac{x(1-3x)}{x+2} \le 0$ $x = 0$ $1 - 3x = 0$ si $x = \frac{1}{3}$

x		-2		0		1 3	
x	-		-	0	+		+
1-3x	+		+		+	0	-
x + 2	-	0	+		+		+
Q(x)	+		-	0	+	0	-

$$\frac{x-3x^2}{x+2} \le 0 \text{ ssi } x \in]-2; 0] \cup [\frac{1}{3}; +\infty[$$

a)
$$x^2 \le 25 + (x - 5)(3x + 1) \Leftrightarrow x^2 - 25 - (x - 5)(3x + 1) \le 0$$

$$\Leftrightarrow (x-5)(x+5) - (x-5)(3x+1) \le 0 \Leftrightarrow (x-5)(x+5-3x-1) \le 0 \Leftrightarrow (x-5)(-2x+4) \le 0$$

$$(x-5)(-2x+4) \le 0$$

$$-2x+4=0 \Leftrightarrow x=2$$

$$x-5=0 \Leftrightarrow x=5$$

х	-∞		2		5		+∞
-2x + 4		+	0	-		-	
x-5		-		-	0	+	
(x-5)(-2x+4)		-	0	+	0	-	

$$S =]-\infty$$
; 2] \cup [5; $+\infty$ [

f)
$$\frac{2x-1}{x-4} \le 1 \iff \frac{2x-1}{x-4} - 1 \le 0 \iff \frac{2x-1}{x-4} - \frac{x-4}{x-4} \le 0 \iff \frac{2x-1-x+4}{x-4} \le 0 \iff \frac{x+3}{x-4} \le 0$$

$$\frac{x+3}{x-4} \le 0$$

$$\frac{x+3}{x-4} \le 0$$

$$x+3=0 \Leftrightarrow x=-3$$

$$x-4=0 \Leftrightarrow x=4$$

$$S=]-3; 4[$$

$\underline{x-4}$	x-4	2	<i>ι</i> − 4			
X	-∞	-3		4		+∞
x + 3	-	0	+		+	
x-4	-		-	0	+	
$\frac{x+3}{x-4}$	+	0	-		+	

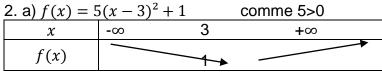
g)
$$S =]-\infty$$
; $\frac{1}{3}$ [U]1; 2[

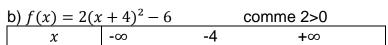
h)
$$S =]-\infty$$
; $-2] \cup [0$; $+\infty[$

i)
$$S = [\frac{5}{6}; 2[$$

j)
$$S = [3; +∞[$$

LACICICC	Df	Tableau de variations	Tableau de signe	Représentation graphique
ę.		x -∞ +∞ ax+ b a>0	x -∞ 0 +∞ ax+ - 0 b + a>0	y Draites
fines f(x)=ax+b	\mathbb{R}	x -∞ +∞ ax+ b a<0	x -∞ 0 +∞ ax+ + 0 b - a<0	-1 0 1 2 3 x
Fonctions affines		x -∞ b → a=0	$ \begin{array}{c ccc} x & -\infty & 0 \\ & +\infty & \\ b & Signe \\ a=0 & de b \end{array} $	
Fonction carrée f(x)=x²	R	$ \begin{array}{c cc} x & -\infty & 0 \\ +\infty & \\ x^2 & & \end{array} $	$ \begin{array}{c ccc} x & -\infty & 0 \\ & +\infty & \\ x^2 & + & 0 \\ & + & \\ \end{array} $	
Fonction inverse f(x)=1/x	\mathbb{R}^*	X -∞ 0 +∞ X ² ▲	X -∞ 0 +∞ X² - +	





f(x)		-6 →	—
c) f(x) = -3	(x-1) - 8		comme -3<0
x	-∞	1	8+
f(x)		-8	
d) f(x) = -(x)	$(x+2)^2+9$		comme -1<0
x	-∞	-2	8+
		0-	/

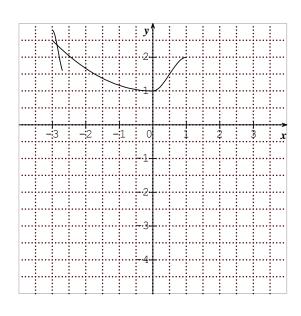
1.a) Vrai

b) Faux c) Vrai

d) Faux

e) On ne sait pas

f) Faux



Exercice 14

Α	0	0	0	4	6
В	32	16	8	8	8
I	1	2	3	4	5
С	16	8	4	6	7
F(C)	18	2	-6	-2	0

Cet algorithme est un algorithme de dichotomie, il permet de trouver une valeur approchée de l'antécédent de 0.

Exercice 15

- a) f(x) = (x-5)(x-1); f(1) = f(5) = 0; La courbe de f coupe l'axe des abscisses en 1 et 5.
- b) $f(x) = x^2 6x + 5$; f(0) = 5; La courbe de f coupe l'axe des ordonnées en 5. c) f(-4) = 45; $f(\frac{2}{3}) = \frac{13}{9}$; $f(\sqrt{5}) = 14 6\sqrt{5}$
- d) $f(x) = -4 \operatorname{ssi} x = x = 3$; $f(x) = 5 \operatorname{ssi} x = 0 \operatorname{ou} x = 6$
- $e)f(x) \le 12 \Leftrightarrow (x-3)^2 4 \le 12 \Leftrightarrow (x-3)^2 16 \le 0$

$$\Leftrightarrow (x-3-4)(x-3+4) \le 0 \Leftrightarrow (x-7)(x+1) \le 0$$

$$x-7=0 \Leftrightarrow x=7 \text{ et } x+1=0 \Leftrightarrow x=-1$$

						·	
	x		-1		7		
Ī	x-7	-		-	0	+	
	x + 1	-	0	+		+	
ĺ	P(x)	+	0	_	0	+	

S=[-1; 7]

- f) $f(x)-(-4)=(x-3)^2\geq 0$ et f(3)=-4
- g) Si $a < b \le 3 \dots f(a) > f(b) \ge -4 f$ décroissante ; si $3 \le a < b \dots -4 \le f(a) < f(b) f$ croissante.
- h) $0.8 \le x \le 0.9 \Leftrightarrow f(0.8) \ge f(x) \ge f(0.9) \Leftrightarrow 4 \ge g(x) \ge 0.41$ car f décroissante
- i) Voir calculatrice.

- a) VI: -1, D_f=]- ∞ ; -1[U]-1; + ∞ [b) f(-4) = 3 et $f(\frac{3}{5}) = \frac{1}{8}$
- c) $f(\frac{1}{2})=0$ et f(2)=1
- d) f(x)≥2 ssi x∈]-∞ ; -1[∪]3 ; +∞[
- e) Réduction au même dénominateur.
- f) Si $a < b < -1 \dots f(a) < f(b)$ f croissante; si $-1 < a < b \dots f(a) < f(b)$ f croissante.
- g) Voir calculatrice.

Exercice 17

a)
$$B(x) = R(x) - C(x) = 8900x - x^3 + 300x^2 - 25000x = -x^3 + 300x^2 - 16100x$$

b)
$$B_m(x) = \frac{-x^3 + 300x^2 - 16100x}{x} = -x^2 + 300x - 16100$$

$$6\ 400 - (x - 150)^2 = 6\ 400 - (x^2 - 300x + 22\ 500) = 6\ 400 - x^2 + 300x - 22\ 500$$
$$= -x^2 + 30x - 16\ 100 = B_m(x)$$

c)
$$B_m(x) = 6400 - (x - 150)^2 = (80 - x + 150)(80 + x - 150) = (-x + 230)(x - 70)$$

 $(-x + 230)(x - 70):$
 $-x + 230 = 0 \Leftrightarrow x$
 $= 230$
 $x - 70$
 x

Le bénéfice moyen est positif entre 70 et 230 articles produits et vendus.

Exercice 18

a) AED est un triangle rectangle en A : $A_{AED} = \frac{x \times (x-6)}{2} = \frac{1}{2}x^2 - 3x$

b) ABCD est un carré de côté x : $A_{ABCD} = x^2$

c)
$$A_{ABCD} > 3 \times A_{AED} \iff x^2 > 3\left(\frac{1}{2}x^2 - 3x\right) = \frac{3}{2}x^2 - 9x \iff \frac{-1}{2}x^2 + 9x > 0 \iff -x^2 + 18x > 0$$

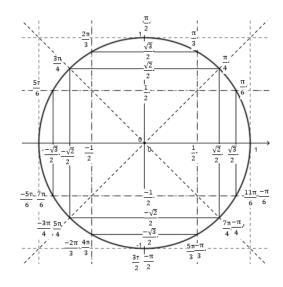
$$\iff x(-x + 18) > 0x = 0 - x + 18 = 0 \iff x = 18$$

x	-∞		0		18		+∞
x		-	0	+		+	
-x + 18		+		+	0	-	
x(x-3)		-	0	+	0	-	

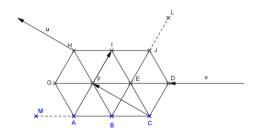
$$S =]0; 18[$$

Or x est une longueur strictement supérieure à 6 cm.

Donc l'aire du carré ABCD est strictement supérieure au triple de l'aire du triangle AED lorsque x est strictement compris entre 6 cm et 18 cm.



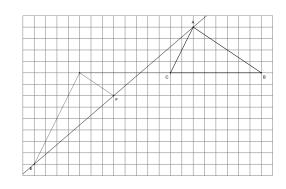
$$\begin{array}{ll}
1.\overrightarrow{GI} + \overrightarrow{FE} = \overrightarrow{AD} & \overrightarrow{CE} + \overrightarrow{JH} = \overrightarrow{DH} \\
\overrightarrow{BE} - \overrightarrow{IF} = \overrightarrow{BJ} & \overrightarrow{DJ} - \overrightarrow{IJ} = \overrightarrow{EH} \\
\overrightarrow{IF} + \overrightarrow{IE} = \overrightarrow{IB} & \overrightarrow{AB} + \overrightarrow{AE} = \overrightarrow{AD} \\
\overrightarrow{EJ} - \overrightarrow{EA} = \overrightarrow{AJ} & \overrightarrow{FI} - \overrightarrow{CF} = \overrightarrow{FD}
\end{array}$$



Exercice 21

1.
$$\vec{u} = \frac{8}{3}\vec{i} - \vec{j}$$
 et $\vec{v} = \frac{-16}{5}\vec{i} + \frac{6}{5}\vec{j}$.
 $\frac{8}{3} \times \frac{6}{5} - (-1) \times \frac{-16}{5} = 0$. \vec{u} et \vec{v} colinéaires.

2.
$$\vec{u} = 4\overrightarrow{AB} + \frac{18}{5}\overrightarrow{CA}$$
 et $\vec{v} = \frac{10}{3}\overrightarrow{AB} - 3\overrightarrow{AC}$.
 $4 \times (-3) - \frac{18}{5} \times \frac{-10}{3} = 0$.
 \vec{u} et \vec{v} colinéaires.



Exercice 22

$$\overrightarrow{FA} + \overrightarrow{FE} = \overrightarrow{FC} + \overrightarrow{CA} + \overrightarrow{FC} + \overrightarrow{CB} + \overrightarrow{BE}$$

$$\overrightarrow{FA} + \overrightarrow{FE} = \overrightarrow{CB} + \frac{1}{2}\overrightarrow{BA} + \overrightarrow{CA} + \overrightarrow{CB} + \frac{1}{2}\overrightarrow{BA} + \overrightarrow{CB} + 2\overrightarrow{BC} - 2\overrightarrow{CA}$$

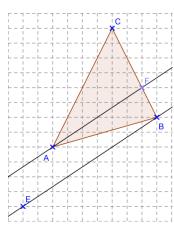
$$\overrightarrow{FA} + \overrightarrow{FE} = \overrightarrow{BA} + \overrightarrow{CB} - \overrightarrow{CA} = \overrightarrow{0}$$
Donc E est le milieu de [AF].

Exercice 23

$$\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{CF} = \overrightarrow{AC} + \frac{2}{3}\overrightarrow{CB} = \overrightarrow{AC} + \frac{2}{3}\overrightarrow{CA} + \frac{2}{3}\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$

$$\overrightarrow{EB} = \overrightarrow{EC} + \overrightarrow{CB} = \frac{3}{2}\overrightarrow{AC} + \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$

$$\overrightarrow{AF} = \frac{2}{3}\overrightarrow{EB}, \text{ donc colinéaires donc parallèles.}$$



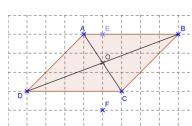
Exercice 24

$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AC} + \overrightarrow{CF} = \frac{-1}{5}\overrightarrow{AB} + \overrightarrow{AC} + \frac{-1}{3}\overrightarrow{CB}$$

$$= \frac{-1}{5}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{DC} + \frac{1}{3}\overrightarrow{AD} = \frac{4}{5}\overrightarrow{AB} + \frac{4}{3}\overrightarrow{AD}$$

$$\overrightarrow{EO} = \overrightarrow{EA} + \overrightarrow{AO} = \frac{-1}{5}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} = \frac{-1}{5}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \frac{3}{10}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$$

$$\frac{4}{5} \times \frac{1}{2} - \frac{3}{10} \times \frac{4}{3} = 0, \dots \text{ colinéaires, } \dots \text{ alignés.}$$



Exercice 25:

$$(D_2)//(D_3)$$
 $(D_1)\cap(D_2)=S(3;\frac{-1}{3})$ $(D_1)\cap(D_3)=S(\frac{11}{3};\frac{1}{9})$

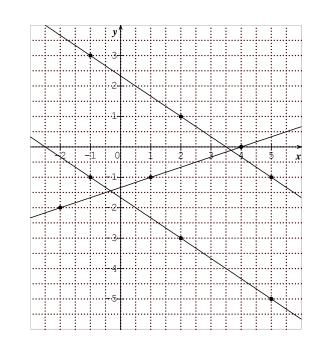
(d₁):
$$y = \frac{2}{5}x - 3$$

(d₂): $y = \frac{-4}{3}x + 2$

(d₂):
$$y = \frac{-4}{3}x + 2$$

$$(d_3): y = 4$$

$$(d_4): x = -2$$



Exercice 27:

(AB):
$$y = \frac{-5}{3}x + \frac{11}{3}$$

(AC) :
$$y = 2x - 11$$

(d):
$$y = 2x + 11$$

Exercice 28

$$-2 \times (-3) + 3 = 6 + 3 = 9$$
 $A \in \Delta$
 $-2 \times 1 + 3 = -2 + 3 = 1$ $C \notin \Delta$

$$-2 \times (-1) + 3 = 2 + 3 = 5$$

 $-2 \times 5 + 3 = -10 + 3 = -7$

 $B \in \Delta$

A, B et C ne sont pas alignés sinon C serait un point de Δ .

$$\overrightarrow{BC}(2;-3)$$
 $\overrightarrow{BD}(6;-9)$

Alors
$$2 \times (-9) - (-3) \times 6 = -18 + 18 = 0$$

Les vecteurs sont colinéaires, les points B, C et D sont alignés.

Exercice 29

Exercice 30

a)
$$x_L = \frac{-5+1}{2} = \frac{-4}{2} = -2$$
 et $y_L = \frac{3+7}{2} = \frac{10}{2} = 5$, donc L(-2; 5)

b) On note M(x; y): ABCM est un parallélogramme ssi $\overrightarrow{AB} = \overrightarrow{MC}$: $\begin{cases} 1 - (-5) = 6 - x \\ 7 - 3 = -1 - y \end{cases} \Leftrightarrow \begin{cases} 6 = 6 - x \\ 4 = -1 - y \end{cases} \Leftrightarrow \begin{cases} 6 = 6 - x \\ 4 = -1 - y \end{cases}$ (x = 0v = -5'

donc M(0; -5)

c) On note
$$N(x;y)$$
: $\overrightarrow{AN} = 2\overrightarrow{AB} + 3\overrightarrow{AC} \Leftrightarrow \begin{cases} x - (-5) = 2 \times (1 - (-5)) + 3 \times (6 - (-5)) \\ y - 3 = 2 \times (7 - 3) + 3 \times (-1 - 3) \end{cases} \Leftrightarrow \begin{cases} x + 5 = 12 + 33 \\ y - 3 = 8 - 12 \end{cases} \Leftrightarrow \begin{cases} x = 40 \\ y = -1 \end{cases}$

donc N(40; -1)

On notre P(x; y): $2\overrightarrow{AP} - \overrightarrow{BP} + 3\overrightarrow{CP} = \overrightarrow{0} \Leftrightarrow \begin{cases} 2(x - (-5)) - (x - 1) + 3(x - 6) = 0\\ 2(y - 3) - (y - 7) + 3(y - (-1)) = 0 \end{cases}$ $\Leftrightarrow \begin{cases} 2x + 10 - x + 1 + 3x - 18 = 0\\ 2y - 6 - y + 7 + 3y + 3 = 0 \end{cases} \Leftrightarrow \begin{cases} 4x - 7 = 0\\ 4y + 4 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{7}{4}, \\ y = -1, \end{cases}$

$$\Leftrightarrow \begin{cases} 2x + 10 - x + 1 + 3x - 18 = 0 \\ 2y - 6 - y + 7 + 3y + 3 = 0 \end{cases} \Leftrightarrow \begin{cases} 4x - 7 = 0 \\ 4y + 4 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{7}{4} \\ y = -1 \end{cases}$$

donc P(1,75;-1)

$$\overrightarrow{AB} \begin{pmatrix} 7 \\ -1 \end{pmatrix}; \overrightarrow{AI} \begin{pmatrix} 4 \\ -4 \end{pmatrix}; \overrightarrow{BI} \begin{pmatrix} -3 \\ -3 \end{pmatrix}$$

$$AB = \sqrt{7^2 + (-1)^2} = \sqrt{50} = 5\sqrt{2}$$

$$AI = \sqrt{4^2 + (-4)^2} = \sqrt{32} = 4\sqrt{2}$$

$$BI = \sqrt{(-3)^2 + (-3)^2} = \sqrt{18} = 3\sqrt{2}$$

$$\Delta I_{2}^{2}+RI_{2}^{2}-32+18-50$$
 of $\Delta R_{2}^{2}-50$

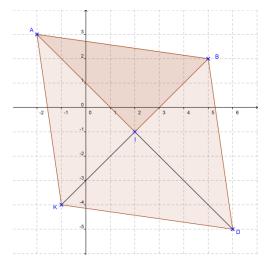
Al²+Bl²=32+18=50 et AB²=50

donc Al²+Bl²=AB².

D'après la réciproque du théorème de Pythagore, ABI est rectangle en I.

Si K est le symétrique de B par rapport à I

alors
$$\overrightarrow{BK} = 2 \ \overrightarrow{BI} \Leftrightarrow \begin{cases} x - 5 = 2 \times (-3) = -6 \\ y - 2 = 2 \times (-3) = -6 \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = -4 \end{cases}$$



$$\frac{x_A+x_D}{2}=\frac{-2+6}{2}=2=x_{\rm I}\quad \text{et}\quad \frac{y+y_D}{2}=\frac{3+(-5)}{2}=-1=y_{\rm I},$$
 I est le milieu de [AD] et de [BK] (par symétrie),

donc I est le milieu de [AD].

donc le quadrilatère AKDB est un parallélogramme car ses diagonales se coupent en leur milieu, mais elles sont aussi perpendiculaires, donc AKBD est un losange.

Soit M(x; y)
$$\in$$
 (AB) alors A, B et M sont alignés donc $\overrightarrow{AB} \begin{pmatrix} 7 \\ -1 \end{pmatrix}$ et $\overrightarrow{AM} \begin{pmatrix} x+2 \\ y-3 \end{pmatrix}$ sont colinéaires : xy'-x'y=0

$$\Leftrightarrow 7(y-3) - (-1)(x+2) = 0 \Leftrightarrow 7y - 21 + x + 2 = 0 \Leftrightarrow 7y = -x + 19 \Leftrightarrow y = \frac{-1}{7}x + \frac{19}{7}$$

E(-38; y) appartient à la droite (AB) ssi ses coordonnées vérifient l'équation de la droite :

$$y = \frac{-1}{7} \times (-38) + \frac{19}{7} = \frac{38+19}{7} = \frac{57}{7}$$

Donc il faut que E(-38; $\frac{57}{3}$)

$$\overrightarrow{AB} \begin{pmatrix} 7 \\ -1 \end{pmatrix}$$
 et $\overrightarrow{IF} \begin{pmatrix} -49 \\ 7 \end{pmatrix}$:

$$xy' - x'y = 7 \times 7 - (-1) \times (-49) = 49 - 49 = 0.$$

Les vecteurs \overline{AB} et \overline{IF} sont colinéaires donc les droites (AB) et (IF) sont parallèles.

Exercice 32

- a) Vrai
- b) Vrai
- c) Vrai
- d) Vrai
- e) Faux
- f) Faux
- g) Faux

Positions relatives de :	Strict parallèles	Coplanaires	Sécant(e)s	Non coplanaires	Confondu(e)s	In cluse
(DH) et (CH)		*	*			
(HB) et (AG)		*	*			
(HB) et(EG)				*		
(EF) et (DC)	*	*				
(EF) et (CG)				*		
(DI) et (AG)				*		
(AH) et (FC)				*		
(EH) et (BFG)	*					
(AH) et (BFG)	*					
(AG) et (BDG)			*			
(IB) et (FCG)						*
(DC) et (BCI)			*			
(AI) et (ABC)			*			
(ABC) et (EFG)	*					
(BCI) et (FGB)					*	
(BDG) et (ABI)			*			
(EHF) et (BCI)			*			
(EFC) et (ADH)			*			
(EHF) et (DBI)			*			

Exercice 35:

Dans ABD, K \in [AD], I \in [AB], $\frac{AK}{AD} = \frac{1}{4}$ et $\frac{AI}{AB} = \frac{1}{2}$ Thalès non vérifié donc (KI) et (BD) ne sont pas parallèles.

Comme elles sont coplanaires (ABD), elles sont sécantes. Dans ABC, $J \in [AC]$, $I \in [AB]$, $\frac{AJ}{AC} = \frac{1}{2}$ et $\frac{AI}{AB} = \frac{1}{2}$ D'après la réciproque de Thalès (IJ) et (BC) sont parallèles.

De plus I∉(BCD), donc (IJ) est parallèle au plan (BCD).

Soit M l'intersection de (IK) et (BD)

Alors (d) est la parallèle à (IJ) (et (BC)) passant par M d'après le théorème du toit.

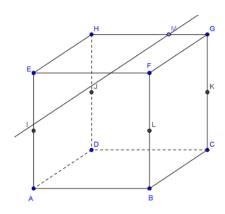
Exercice 36

(IJ)//(AD)//(BC)//(LK) car milieu. Donc (IJ)//(LK),

M point commun aux deux plans,

Théorème du toit,

 Δ passe par M et // $\dot{a}(IJ)$ et (LK).



Exercice 37

40% de 60 : 24

Effectifs c c	34	52	62	67	
Fréquences					100

1292 : 1143 : [1143 : 1525] : 687.

Au moins 50% des employés gagnent entre 1143 et 1525 €.

Exercice 39

- a) Faux Q₃, 25%.
- b) Vrai M=123. c) Vrai Q₃=255>Max=176.
- d) Vrai moyenne.

Exercice 40

- 1.b)
- 2.a)
- 3. c)

Exercice 41

A∩B : « la carte tirée est l'as de cœur » ; A∪B : « la carte tirée est un as ou un cœur ».

 $\bar{A} \cap \bar{B}$: « la carte tirée n'est ni un cœur ni un as ».

On tire au hasard, donc il y a équiprobabilité, on applique la formule de Laplace :

$$p(A) = \frac{4}{32} = \frac{1}{8}$$

$$p(B) = \frac{8}{32} = \frac{1}{4}$$

$$p(A \cap B) = \frac{1}{22}$$

$$p(A) = \frac{4}{32} = \frac{1}{8}$$
 $p(B) = \frac{8}{32} = \frac{1}{4}$ $p(A \cap B) = \frac{1}{32}$ $p(A \cup B) = p(A) + p(B) - p(A \cap B) = \frac{11}{32}$

$$p(\bar{A} \cap \bar{B}) = p(\overline{A \cup B}) = 1 - p(A \cup B) = \frac{21}{32}$$

Exercice 42

	E	$ar{E}$	Total
S	405	600	1005
$\bar{\mathcal{S}}$	315	180	495
Total	720	780	1500

L'abonné est pris au hasard, il y a équiprobabilité, on applique la formule de Laplace :

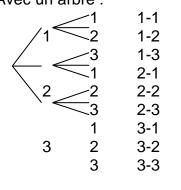
$$p_1 = \frac{405 + 600 + 315}{1500} = \frac{1320}{1500} = \frac{2}{25} \qquad p_2 = \frac{780}{1500} = \frac{13}{25}$$

$$p_2 = \frac{780}{1500} = \frac{13}{25}$$

$$p_3 = \frac{315}{1500} = \frac{21}{100}$$
.

Exercice 43

Avec un arbre:



Algorithme:

```
VARIABLES
      a EST_DU_TYPE NOMBRE
      b EST_DU_TYPE NOMBRE
     i EST_DU_TYPE NOMBRE
S EST_DU_TYPE NOMBRE
      f EST_DU_TYPE NOMBRE
   DEBUT ALGORITHME
     S PREND_LA_VALEUR S=0
      POUR i ALLANT DE 1 A 100
       DEBUT_POUR
       a PREND_LA_VALEUR floor(random()*3+1)
b PREND_LA_VALEUR floor(random()*3+1)
11
       SI (a==b) ALORS
         DEBUT_SI
S PREND_LA_VALEUR S+1
16
          FIN SI
17
        FIN_POUR
    f PREND_LA_VALEUR S/100
      AFFICHER "f="
      AFFICHER f
21 FIN_ALGORITHME
```

Les promeneurs s'assoient au hasard, il y a équiprobabilité, donc on peut appliquer la formule de Laplace:

On note M : « les deux promeneurs sont assis sur le même banc », alors $p(M) = \frac{3}{6} = \frac{1}{2}$

On note x la probabilité de sortie du 1 : p1 = p2 = p3 = p4 = p5 = x et p6 = 2x De plus p1 + p2 + p3 + p4 + p5 + p6 = 1 Soit $x + x + x + x + x + 2x = 1 \iff 7x = 1 \iff x = \frac{1}{7}$ $p1 = p2 = p3 = p4 = p5 = \frac{1}{7}$ et $p6 = \frac{2}{7}$ p(A) = p5 + p6 = 1/7 + 2/7 = 3/7 p(B) = p1 + p3 + p5 = 17 + 17 + 17 = 37 p(C) = p1 + p2 = 1/7 + 1/7 = 2/7 p(D) = 1 - p(B) = 1 - 37 = 47

Exercice 45

Dans chacun des cas suivants, dire a/ si l'implication : **Si P alors Q** est vraie ou fausse b/ si la réciproque : **Si Q alors P** est vraie ou fausse

P	Q	Réponse a/	Réponse b/
x=2	x ² =4	V	F
x>2	x ² >4	V	F
$X > \frac{-1}{2}$	$\frac{1}{r}$ <-2	F	F
f est affine	la courbe est une droite	V	F
$X = \frac{\pi}{3}$	$\cos x = \frac{1}{2}$	V	F
ABC triangle rectangle en A	BC ² =AB ² +AC ²	V	V
$\overrightarrow{AB} = \overrightarrow{DC}$	ABCD parallélogramme	V	V
AB = CD	$\overrightarrow{AB} = \overrightarrow{CD}$	F	V
AB ≠ CD	$\overrightarrow{AB} \neq \overrightarrow{CD}$	V	F
(d) et (d') coplanaires	(d)//(d')	F	V
C'est le 1 ^{er} janvier	Le lycée est fermé	V	F

- a) AH2=HB×HC: AH2=9 et HB×HC=16 donc le triangle ne peut être rectangle.
- b) AH²=HB×HC: AH²=36 et HB×HC=36 donc le triangle peut être rectangle. Mais ce n'est pas obligatoire.
- c) ABC rectangle en B alors H est confondu avec B. AH²=AB² et HB×HC=0. Donc la relation est fausse.
- d) Oui, d'après la propriété.