Trigonométrie

OS 3.2 et 3.9 --- édition du 19 novembre 2014

Traduire des angles

En mathématiques, il est suggéré de toujours travailler en radians.

Pour connaître la mesure d'un angle en degré, il suffit d'utiliser le symbole ° disponible en appuyant sur \overline{m} . Lorsqu'on travaille en radians, la traduction des degrés aux radians est automatique. Par exemple, entrez 30° suivi de enter et obtenez $\frac{\pi}{c}$.

◀ 1.	1. 🕨				*tri	gono	omét	rie 🤜	~		<[]>	<	◀ 1.1 ▶	*trigonométrie 🗢	(<mark>1</mark> 🗙
cos	$\left(\frac{\pi}{6}\right)$									7	3	1	$\cos\left(\frac{\pi}{6}\right)$		$\frac{\sqrt{3}}{2}$
cos	30)	Ç.							- {	cos(30)		cos(30)		cos(30)
π	e	i	E	00	θ	-	_	•	•	Â			cos(30°)		$\sqrt{3}$
r	g		L	=	≠	<	≤	>	2						2
1	+	-	*	30	×	1	$\frac{1}{2}$	٨	±	•			30°		π
															6
		_			_						2/99	2			8/99

Pour convertir un angle des radians aux degrés, utilisez le symbole > du menu obtenu en appuyant successivement sur erri et a. Un angle suivi de >DD permet d'obtenir des degrés avec des décimales et, s'il est suivi de >DMS, d'obtenir des mesures en degrés, minutes et secondes.

₹ 1.	1				*tri	gono	omét	rie 🤜	7		1	×	◀ 1.1 ▶	*trigonométrie 🗢 🛛 🚺 🞽
cos	6									ŝ	2			6
cos	30)									cos	s(30)	I	$\frac{\pi}{6}$ DD	30°
π	e 9	i	E	••	θ ≠	→ <	- ~	>	*>	î	B-	l	1▶DD	$\left(\frac{180}{\pi}\right)^{\circ}$
-	+	-	*		×	1	÷	^	±	•	<u>π</u> 6	I	(1.))DD	57.2958°
π/6									_			~	(1.)▶DMS	57°17'44.8062"
											4/5	9		8/99

Résoudre des équations trigonométriques

On résout des équations trigonométriques de la même façon que les autres types d'équations à une variable, en appuyant successivement sur menu 3 1 ou en entrant directement *solve*. Dans l'image qui suit, on résout l'équation $\cos(t) = \frac{1}{2}$ sur l'intervalle $[0;2\pi]$ et ensuite sur l'intervalle $[-2\pi;2\pi]$.

$solve(cos(t)=0.5,t) 0\leq t\leq 2\cdot\pi$	<i>t</i> =1.0472 or <i>t</i> =5.23599
solve $\left(\cos(t) = \frac{1}{2}, t\right) 0 \le t \le 2 \cdot \pi$	$t=\frac{\pi}{3}$ or $t=\frac{5\cdot\pi}{3}$
solve $\left(\cos(t) = \frac{1}{2}, t\right) = 2 \cdot \pi \le t \le 2 \cdot \pi$	$t = \frac{-5 \cdot \pi}{3}$ or $t = \frac{-\pi}{3}$ or $t = \frac{\pi}{3}$ or $t = \frac{5 \cdot \pi}{3}$

Notez que nous avons d'abord résolu l'équation en utilisant l'écriture décimale 0.5 au lieu de ½. Étant donné que les angles solutions de l'équation seront des angles standards, ce sera visuellement plus clair si on résout l'équation avec l'écriture fractionnaire ½.

Contrairement à la plupart des équations que vous avez résolues jusqu'à maintenant, les équations trigonométriques peuvent posséder une infinité de solutions. Par exemple, l'ensemble de toutes les solutions réelles de l'équation $\cos(t) = \frac{1}{2}$ s'écrit mathématiquement

$$\left\{\frac{\pi}{3}+k\cdot 2\pi;-\frac{\pi}{3}+k\cdot 2\pi\right|k\in\mathbb{Z}\right\}.$$

Dans les images qui suivent, vous voyez que pour désigner un entier (l'équivalent du k de l'ensemble ci-dessus) la calculatrice utilise **n16**. En général pour désigner un entier, la calculatrice utilise **n** suivi d'un entier positif en caractère gras. Pour déterminer des valeurs d'angles en particulier, vous devez substituer une valeur à **n16** en utilisant le tel que « | » suivi de @n16=valeur. Le symbole @ se trouve à la 4^{ème} ligne du menu sous er (dans la même colonne que le symbole de conversion).

coluctor(t) 1	_(6· n16 -1)·π(6· n16 +1)·π
solve (cos(1)-2,1)	3	3
$(6 \cdot n16 - 1) \cdot \pi$ (6 $\cdot n16 + 1) \cdot \pi$		
3 3		

Dans les exemples ci-dessous, on a remplacé **n16** successivement par 0, 1 et -1.

$t = \frac{(6 \cdot n16 - 1) \cdot \pi}{3} \text{ or } t = \frac{(6 \cdot n16 + 1) \cdot \pi}{3} n16 = 0$	$t=\frac{-\pi}{3}$ or $t=\frac{\pi}{3}$
$t = \frac{(6 \cdot n16 - 1) \cdot \pi}{3} \text{ or } t = \frac{(6 \cdot n16 + 1) \cdot \pi}{3} n16 = 1$	$t=\frac{5\cdot\pi}{3}$ or $t=\frac{7\cdot\pi}{3}$
$t = \frac{(6 \cdot n16 - 1) \cdot \pi}{3} \text{ or } t = \frac{(6 \cdot n16 + 1) \cdot \pi}{3} n16 = -1$	$t = \frac{-7 \cdot \pi}{3} \text{ or } t = \frac{-5 \cdot \pi}{3}$

Attention! La calculatrice remplace la suite de caractères @n16 par *n16* sans laisser de trace du @. Il faut tout de même savoir qu'il y est.

Produire un graphique

On produit le graphique d'une fonction trigonométrique de la même façon que pour toutes les autres fonctions à une variable que vous avez vues jusqu'à maintenant.

Si vous voulez, vous pouvez utiliser une fenêtre conçue pour les fonctions trigonométriques en appuyant sur menu 4 et sélectionnant 8: Zoom-Trigo. Dans cette fenêtre, l'abscisse va de -2π à 2π . Les graduations en abscisse et en ordonnée sont aux multiples de $\frac{1}{2}$.

Comme pour d'autres types de fonctions à une variable, on peut passer en mode Trace, Analyse graphique, etc.

Une chose peut vous surprendre si vous tenez absolument à obtenir un graphique dont l'abscisse est en degrés; même si vous changez l'unité des angles dans les réglages du classeur (acc 72), l'abscisse du graphique demeure en radians...

Le mystère s'éclairci lorsqu'on apprend qu'il y a un deuxième réglage pour les angles, celui de Graphiques & géométrie sous 9 de la touche menu.

► 1: Actions	Réglages Graphiques & géométrie
2: Affichage 4: Eenêtre 10: 5: Trace 10: 6: Analyser la représentation graphique 10: 7: Tableau	Afficher chiffres : Flottant 3 Angle représenté : Degré Angle géométrique : Auto Radian Masquer automa Degré abels de
♦ 8: Géométrie 11 9: Paramètres 12(x)=1/2 -4.19	(x) Afficher les valeurs extrêmes des axes Restaurer Par défaut OK Annuler

Changez le pour Degré et le problème sera réglé... Ah non?

Réglages Graphiques & géométrie	🖣 🚺 1.1 1.2 🕨 👫 trigonométrie 🤝 🐔 🚺 🔀
Afficher chiffres : Flottant 3 Angle représenté : Degré Angle géométrique : Degré Masquer automatiquement les labels de tracé Afficher les valeurs extrêmes des axes Restaurer Par défaut OK Annuler	$f_{6.28}$ $f_{1}(x) = \cos(x)$ $f_{2}(x) = \frac{1}{2}$

Avez-vous pensé modifier l'abscisse pour -360 à 360?

4	Réglages de la fenê	tre	×	1.1	1.2	*trigonométrie 🤜	~ 🖞 🗙
	Réglages de la fené XMin : XMax : Graduation des X : YMin : YMax : Graduation des Y :	-360 360 Automatique -4.1887902047864 4.1887902047864 Automatique OK Annule		-360		4.19 y	$fi(x) = \cos(x)$ $f2(x) = \frac{1}{2}$
			4			-4.19	2

Bref, laissez les angles en radians!