

Fonction exponentielle

I Définition

Théorème 1

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.

On appelle cette fonction : fonction exponentielle et on la note provisoirement exp .

Conséquences immédiates liées à la définition de la fonction exponentielle

- La fonction exponentielle, $exp: x \mapsto exp(x)$ est définie et dérivable sur \mathbb{R}
- exp'(x) = exp(x) pour tout $x \in \mathbb{R}$
- exp(0) = 1

Nombre d'Euler

- On pose exp(1) = e; on obtient $e \approx 2,718$, e est appelé le nombre d'Euler.
- On généralise à l'ensemble des nombres réels : $exp(x) = e^x$

Remarque : e^x se dit « exponentielle x » ou « e exposant n »

Histoire des mathématiques

Comme π , le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique.

Ses premières décimales sont : $e \approx 2,71828182845904523536028747135266249775724709369995957496...$

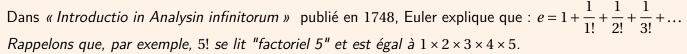
Le nombre e est également un nombre transcendant. On dit qu'un nombre est transcendant s'il n'est solution d'aucune équation à coefficients entiers.

Le nombre $\sqrt{2}$ par exemple, est irrationnel mais n'est pas transcendant puisqu'il est solution de l'équation $x^2=2$. Un tel nombre est dit « algébrique » .

Le premier à s'intéresser de façon sérieuse au nombre \emph{e} est le mathématicien suisse

Leonhard Euler (1707; 1783). C'est à lui que nous devons le nom de ce nombre.

Non pas qu'il s'agisse de l'initiale de son nom mais peut être car e est la première lettre du mot exponentiel.



Par cette formule, il obtient une estimation de e avec 18 décimales exactes.

Nous devons aussi à Euler la démonstration de l'irrationalité de e

II Etude de la fonction exponentielle

Variations

La fonction exponentielle f tel que $f(x) = exp(x) = e^x$

- f est définie et dérivable sur $\mathbb R$
- f est strictement positive sur $\mathbb R$
- $f'(x) = exp(x) = e^x$
- f' est strictement positive sur $\mathbb R$ donc f est strictement croissante sur $\mathbb R$
- Tableau de variation :

x	$-\infty$	+∞
exp'(x)	+	
Variation de <i>exp</i>	0	+∞

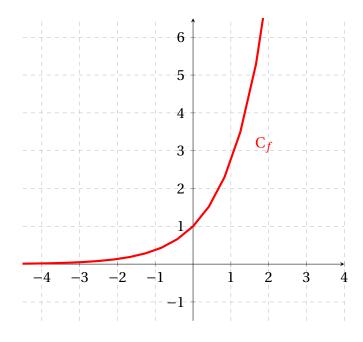
Démonstration :

La fonction f est définie, dérivable et strictement positive sur $\mathbb R$

Alors
$$f'(x) = exp(x) = e^x > 0$$

Donc la fonction exponentielle est strictement croissante sur \mathbb{R} .

Courbe représentative :



III Propriétés de la fonction exponentielle

Conséquences liées à cette nouvelle notation

•
$$e^0 = 1$$
 et $e^1 = e$

Pour tous nombres a et b , $e^{a+b}=e^a\times e^b$ $e^{-a}=\frac{1}{e^a}$ $e^{a-b}=\frac{e^a}{e^b}$

• Pour tout nombre a, et pour tout entier relatif n, $(e^a)^n = e^{a \times n}$

Remarque : La fonction exponentielle transforme les sommes en produit

Exemples : Simplifier les expressions : $\frac{(e^x)^2 \times e^x}{e^{4x}}$, $(e^x + e^{-x})^2 - (e^x - e^{-x})^2$ et $(e^x + e^{-x})^2 + (e^x - e^{-x})^2$

 $\frac{(e^x)^2 \times e^x}{e^{4x}} = \frac{e^{2a} \times e^x}{e^{4x}} = \frac{e^{2x+x}}{e^{4x}} = \frac{e^{3x}}{e^{4x}} = e^{3x-4x} = e^{-x}$

$$(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2} = (e^{2x} + 2 \times e^{x} \times e^{-x} + e^{-2x}) - (e^{2x} - 2 \times e^{x} \times e^{-x} + e^{-2x})$$

$$= e^{2x} + 2e^{0} + e^{-2x} - e^{2x} + 2e^{0} - e^{-2x}$$

$$= 2 + 2 = 4$$

$$(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2} = (e^{2x} + 2 \times e^{x} \times e^{-x} + e^{-2x}) + (e^{2x} - 2 \times e^{x} \times e^{-x} + e^{-2x})$$

$$= e^{2x} + 2e^{0} + e^{-2x} + e^{2x} - 2e^{0} + e^{-2x}$$

$$= 2e^{2x} + 2e^{-2x} = 2(e^{2x} + e^{-2x})$$

IV Equations - Inéquations

La fonction exponentielle f tel que $f(x) = exp(x) = e^x$

- Pour tous réels a et b , a=b est équivalent à $e^a=e^b$
- Pour tous réels a et b , $a \le b$ est équivalent à $e^a \le e^b$

Démonstration :

Raisonnement par l'absurde

Si
$$a = b$$
 alors $e^a = e^b$

et réciproquement si $e^a = e^b$ et on suppose $a \neq b$ avec a < b ,

comme la fonction exponentielle est strictement croissante sur ${\mathbb R}$

alors
$$e^a < e^b$$

ce qui contredit l'hypothèse donc a = b.

ullet Cela découle du fait que la fonction exponentielle est strictement croissante sur ${\mathbb R}$

Exemples:

• Résoudre dans \mathbb{R} l'équation $e^{-5x+1} = 1$.

$$e^{-5x+1} = 1$$
 \Leftrightarrow $e^{-5x+1} = e^0$ \Leftrightarrow $-5x+1 = 0$ \Leftrightarrow $x = \frac{1}{5}$
Donc $S = \left\{\frac{1}{5}\right\}$

• Résoudre dans \mathbb{R} l'équation $e^{2x} = 0$.

$$e^{2x} = 0$$

Comme la fonction exponentielle est strictement positive sur $\ensuremath{\mathbb{R}}$

Donc l'équation $e^{2x} = 0$ n'a pas de solution.

Donc
$$S = \emptyset$$

• Résoudre dans $\mathbb R$ l'équation $e^{x^2}=e^4$.

$$e^{x^2} = e^4$$
 \Leftrightarrow $x^2 = 4$ \Leftrightarrow $x = -2$ ou $x = 2$

Donc
$$S = \{-2; 2\}$$

• Résoudre dans \mathbb{R} l'inéquation $e^{-5x+1} > 1$

Soit
$$x$$
 un réel
$$e^{-5x+1} > 1 \quad \Leftrightarrow \quad -5x+1 > 0 \quad \Leftrightarrow \quad -5x > -1 \quad \Leftrightarrow \quad x < \frac{-1}{-5} \quad \Leftrightarrow \quad x < \frac{1}{5}$$
 Donc $S = \left] -\infty; \frac{1}{5} \right[$

• Résoudre dans \mathbb{R} l'équation $e^{x^2-3x} \le e^{-2}$

Soit x un réel.

$$e^{x^2-3x} \le e^{-2}$$
 \Leftrightarrow $x^2-3x \le -2$ (par stricte croissance de la fonction exponentielle sur \mathbb{R})

$$\Leftrightarrow \qquad x^2 - 3x + 2 \le 0$$

Le discriminant du trinôme $x^2 - 3x + 2$ est $\Delta = (-3)^2 - 4 \times 2 = 1$

L'équation
$$x^2 - 3x + 2 = 0$$
 admet donc deux racines distinctes : $x_1 = \frac{3-1}{2} = 1$ et $x_2 = \frac{3+1}{2} = 2$

Le cours sur le signe d'un trinôme du second degré nous permet alors de donner le signe du trinôme $x^2 - 3x + 2$:

x	$-\infty$		1		2		+∞
$x^2 - 3x + 2$		+	0	_	0	+	

Donc S = [1; 2]

V Fonctions de la forme e^u

Propriétés (admises)

Soit u une fonction définie sur un intervalle I.

On considère la composée de la fonction u suivie de la fonction exponentielle : $x \mapsto u(x) \mapsto e^{u(x)}$.

On note e^u cette composée.

Par conséquent :

- ullet l'ensemble de définition de la fonction e^u est le même que celui de u
- Soit u une fonction dérivable sur un intervalle I de \mathbb{R} , alors e^u est dérivable sur I et $(e^u)' = u' \times e^u$
- La fonction e^u a le même sens de variation que la fonction u

Remarque : Soit la fonction f définie sur \mathbb{R} par $f(x) = e^{ax+b}$ alors sa dérivée est $f'(x) = ae^{ax+b}$

Exemples : Dériver les fonctions f, g, h et k sur les intervalles indiqués.

• $f(x) = e^{-x} \operatorname{sur} \mathbb{R}$

On remarque que $f=e^u$ avec u dérivable sur $\mathbb R$ avec u(x)=-x et u'(x)=-1

Donc la fonction f est dérivable sur $\mathbb R$ et $f'(x) = (-1) \times e^{-x} = -e^{-x}$

• $g(x) = e^{3x+4} \operatorname{sur} \mathbb{R}$

On remarque que $g = e^u$ avec u dérivable sur \mathbb{R} avec u(x) = 3x + 4 et u'(x) = 3

Donc la fonction g est dérivable sur \mathbb{R} et $g'(x) = 3 \times e^{3x+4} = 3e^{3x+4}$

• $h(x) = e^{1-x^2} \operatorname{sur} \mathbb{R}$

On remarque que $h = e^u$ avec u dérivable sur \mathbb{R} avec $u(x) = 1 - x^2$ et u'(x) = -2x

Donc la fonction h est dérivable sur \mathbb{R} et $h'(x) = -2x \times e^{1-x^2} = -2xe^{1-x^2}$

• $k(x) = e^{-4x + \frac{2}{x}} \text{ sur }]0; +\infty[$

On remarque que $k = e^u$ avec u dérivable sur \mathbb{R} avec $u(x) = -4x + \frac{2}{x}$ et $u'(x) = -4 + \frac{-2}{x^2}$

Donc la fonction k est dérivable sur \mathbb{R} et $k'(x) = \left(-4 + \frac{-2}{x^2}\right)e^{-4x + \frac{2}{x}}$