

DS 4 - 22 JANVIER 2016

Durée : 2h AVEC Calculatrice

NOM: Prénom:

La notation tiendra compte de la présentation, ainsi que de la précision de la rédaction et de l'argumentation. Aucun prêt n'est autorisé entre les élèves.

in precin est datorise entre les eleves.								
Bilan	Algèbre		Fonctions			Algo		
	Ex 1	Ex 2	Ex 3	Ex 4	Ex 5	Ex 6	Ex 6	Ex 8
/ 40	/ 8	/ 2	/2	/2	/ 15	/3	/ 4	/4

	Acquis	+ ou -	Non acquis	Non fait
Résoudre une équation (simple, produit, quotient)				
Mettre au même dénominateur				
Mettre un problème en équation.				
Résoudre une équation se ramenant au premier degré.				
 Rechercher des images ou des antécédents d'un nombre par tableau ou lecture graphique 				
 Décrire (par un texte ou un tableau de variations) les variations d'une fonction définie par une courbe 				
 Dessiner une représentation graphique compatible avec un tableau de variations 				
Connaître les variations des fonctions carré et inverse				
Interpréter un algorithme donné				

Exercice 1 - 8 points - (sur la copie)

Résoudre dans \mathbb{R} les équations et inéquations suivantes :

a)
$$2x - 3(x + 2) = 4$$

b)
$$-4x + 6 \le 3x + 20$$

c)
$$25x^2 - 30x + 9 = 0$$

d)
$$(2x-1)^2 = 9$$

e)
$$5x - \frac{x+1}{2} = 1$$

f)
$$\frac{x-1}{5} + \frac{1}{3} \ge \frac{2x-1}{15} + \frac{1}{3}$$

g)
$$\frac{(x+1)(2x-4)}{x-2} = 0$$

$$h) \quad \frac{2x-1}{x+3} = 1$$

Exercice 2 - 2 points - (sur la copie)

Trouver trois nombres entiers consécutifs tels que la différence entre le carré du plus grand et le produit des deux autres soit égale à 550.

(On pourra noter ces nombres x, x + 1 et x + 2)

Exercice 3 - 2 points - (sur la copie)

Dans un lycée, les professeurs de Seconde organisent un voyage de fin d'année ; ils ont loué des cars. S'ils décident de mettre quarante élèves par car, onze élèves n'ont pas de place. S'ils mettent quarante-trois élèves par car, il reste une place dans un car.

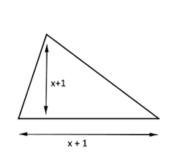
Combien y a-t-il de cars?

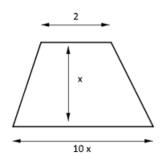
Combien y a-t-il d'élèves ?

Exercice 4 - 2 points - (sur la copie)

Un géomètre prétend qu'on peut construire un triangle et un trapèze de même aire avec les dimensions suivantes (en cm).

Si le géomètre a raison, pour quelle(s) valeur(s) de x est-ce possible ?





Exercice 5 - 15 points -

(sur partie A sur le poly, partie B sur la copie)

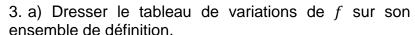
Partie A

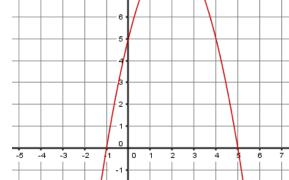
Soit f une fonction définie représentée par la courbe donnée ci-dessous.

1. Quel est l'ensemble de définition de la fonction *f* ?

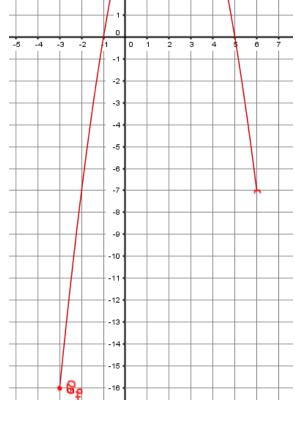


b) Lire les antécédents de 0 et de - 4.





- b) Donner le maximum de la fonction f. En quelle valeur est-il atteint ?
- 4. a) Résoudre graphiquement l'équation f(x) = 8.
 - b) Résoudre graphiquement l'inéquation $f(x) \ge 5$.
 - c) Si $x \in [-2; 4]$, donner le meilleur encadrement possible pour f(x).



- 5. Soit g définie par g(x) = x + 5.
 - a) Représenter, sur le graphique donné, la fonction g.
 - b) Résoudre graphiquement l'équation f(x) = g(x).
 - c) Résoudre graphiquement l'inéquation f(x) < g(x).

Partie B

On donne maintenant l'expression de la fonction dessinée ci-contre par : $f(x) = 9 - (x - 2)^2$.

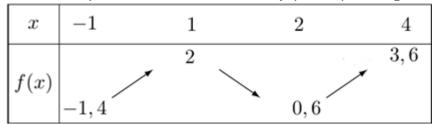
- 1. a) Développer et réduire l'expression f(x).
 - b) Factoriser l'expression f(x) et montrer que : f(x) = (x + 1)(5 x).
- 2. Calculer f(1) et $f(-\sqrt{3})$.
- 3. Déterminer par le calcul les antécédents de 0 par f .
- 4. a) Résoudre l'équation f(x) = 5 par le calcul.
 - b) On rappelle que g(x) = x + 5, résoudre l'équation f(x) = g(x) par le calcul.

Exercice 6 - 3 points -

(sur le poly)

On donne le tableau de variations suivant d'une fonction f.

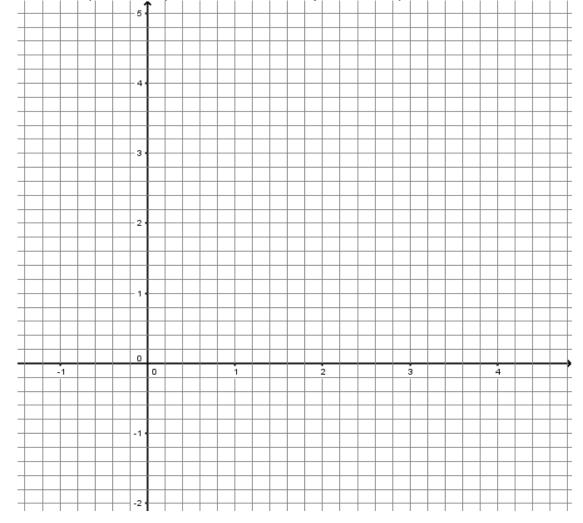
On sait de plus que la courbe représentative de la fonction f passe par l'origine du repère.



- 1. Pour chaque situation, entourer la seule bonne réponse parmi les quatre proposées :
 - Le maximum de la fonction f est :
 - □ 1
- □ 2
- □ 3,6 □ 4
- Le minimum de la fonction f sur l'intervalle [1; 4] est :
 - □ 1,4
- \Box -1
- □ 0,6 □ 1
- L'équation f(x) = 0 possède exactement :
 - □ 0 solution
- □ 1 solution
- □ 2 solutions
- □ 3 solutions
- On veut comparer les images f(1,2) et f(1,5):

- $\Box f(1,2) < f(1,5)$ $\Box f(1,2) = f(1,5)$ $\Box f(1,2) > f(1,5)$ \Box On ne peut rien dire

2. Tracer une courbe pouvant représenter la fonction f dans le repère ci-dessous.



Exercice 7 - 4 points - (sur la copie)

- 1. Donner l'ensemble de définition D_C de la fonction carré, puis celui de la fonction inverse D_I .
- 2. Quel est le sens de variations de la fonction inverse sur D_C ?
- 3. Si $x \in]-5$; -3 [, à quel intervalle appartient x^2 ? (justifier)
- 4. Si $x \in [5; 10[$, à quel intervalle appartient $\frac{1}{x}$? (justifier)
- 5. Comparer, en justifiant, $(\pi 2)^2$ et $(\pi + 1)^2$.

Exercice 8 - 4 points - (sur le poly)

Considérons l'algorithme suivant :

igorianno carvant :					
Début algorithme					
Variables					
x du type nombre					
N du type nombre					
Entrée					
Saisir <i>x</i>					
$0 \rightarrow N$					
Traitement					
Tant que <i>N</i> + 1 ≤ x					
faire $N + 1 \rightarrow N$					
FinTant					
Afficher N					
Fin algorithme					

1. On choisit pour valeur initiale x = 5,2. Compléter le tableau ci-dessous :

Numéro		Valeur de N avant le		
	de la	passage dans la boucle	passage dans la boucle	conditionnelle (oui/non)
boucle				
1				

Combien de passages dans la boucle conditionnelle ont été nécessaires pour l'arrêt de l'algorithme ?

2. Recommencer l'algorithme pour x = 2.

Numéro	de	Valeur de N avant le	Valeur de N après le	Arrêt de la boucle
	de la	passage dans la boucle	passage dans la boucle	conditionnelle (oui/non)
boucle				
1				

- 3. Que donne l'algorithme pour x = 3,1?
- 4. Le nombre N obtenu est appelé la partie entière de x, noté Ent(x).

On a donc: $Ent(5,2) = \dots$ $Ent(2) = \dots$ et $Ent(3,1) = \dots$

CORRECTION: DS 4 - 22 JANVIER 2016

Durée : 2h AVEC Calculatrice

NOM: Prénom:

Bilan	Algèbre			Fonctions			Algo	
	Ex 1	Ex 2	Ex 3	Ex 4	Ex 5	Ex 6	Ex 6	Ex 8
/ 40	/ 8	/ 2	/2	/2	/ 15	/3	/ 4	/4

	Acquis	+ ou -	Non acquis	Non fait
Résoudre une équation (simple, produit, quotient)				
Mettre un problème en équation.				
Résoudre une équation se ramenant au premier degré.				
Déterminer l'image d'un nombre par tableau ou lecture graphique				
 Rechercher des antécédents d'un nombre par tableau ou lecture graphique 				
 Décrire (par un texte ou un tableau de variations) les variations d'une fonction définie par une courbe 				
 Dessiner une représentation graphique compatible avec un tableau de variations 				
Connaître les variations des fonctions carré et inverse				
Tracer la représentation graphique d'une fonction				
Interpréter un algorithme donné				

Exercice 1 - 8 points -

Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

a)
$$2x-3(x+2)=4$$

 $2x-3x-6=4$
 $-x=4+6$
 $-x=10$
 $x=-10$
Donc $S=\{-10\}$

c)
$$25x^2 - 30x + 9 = 0$$

 $(5x)^2 - 2 \times 5x \times 3 + 3^2 = 0$
 $(5x - 3)^2 = 0$
 $5x - 3 = 0$
 $x = \frac{3}{5}$
Donc $S = \left\{\frac{3}{5}\right\}$

e)
$$5x - \frac{x+1}{2} = 1$$

 $\frac{10x}{2} - \frac{x+1}{2} = \frac{2}{2}$
 $\frac{10x - (x+1)}{2} = \frac{2}{2}$
 $10x - x - 1 = 2$
 $9x = 3$
 $x = \frac{1}{3}$
Donc $S = \left\{\frac{1}{2}\right\}$

b)
$$-4x + 6 \le 3x + 20$$

 $6 - 20 \le 3x + 4x$
 $-14 \le 7x$
 $-\frac{14}{7} \le x$
 $-2 \le x$
Donc $S = [-2; +\infty[$

d)
$$(2x-1)^2 = 9$$

 $(2x-1)^2 - 3^2 = 0$
 $(2x-1-3)(2x-1+3) = 0$
 $(2x-4)(2x+2) = 0$
soit $2x-4=0$ soit $2x+2=0$
 $x=2$ $x=-1$
Donc $S = \{-1; 2\}$

f)
$$\frac{x-1}{5} + \frac{1}{3} \ge \frac{2x-1}{15} + \frac{1}{3}$$
$$\frac{3(x-1)}{15} + \frac{5}{15} \ge \frac{2x-1}{15} + \frac{5}{15}$$
$$3x-3+5 \ge 2x-1+5$$
$$3x+2 \ge 2x+4$$
$$3x-2x \ge 4-2$$
$$x \ge 2$$
Donc
$$S = [2; +\infty[$$

g)
$$\frac{(x+1)(2x-4)}{x-2}=0$$

• Valeur interdite : 2
$$x - 2 = 0$$

$$x = 2$$

Résolution

$$\frac{(x+1)(2x-4)}{x-2} = 0$$

$$(x+1)(2x-4)=0$$

soit
$$x + 1 = 0$$
 $x = -1$
soit $2x - 4 = 0$ $x = 2$

Solutions possibles: -1 et 2

• Bilan

VI : 2

SP: 2 et −1

 $\underline{\mathsf{Donc}} \quad S = \{-1\}$

h)
$$\frac{2x-1}{x+3} = 1$$

• Valeur interdite: −3

$$\begin{aligned}
 x + 3 &= 0 \\
 x &= -3
 \end{aligned}$$

• Résolution

$$\frac{2x-1}{x+3} - 1 = 0$$

$$\frac{2x-1}{x+3} - \frac{1(x+3)}{x+3} = 0$$

$$\frac{2x - 1 - (x + 3)}{x + 3} = 0$$

$$\frac{2x - 1 - x - 3}{x + 3} = 0$$

$$\frac{x-4}{x+3} = 0$$

$$x - 4 = 0$$

$$x = 4$$

Solution possible: 4

Bilan

VI : −3

SP:4

Donc $S = \{4\}$

Exercice 2 - 2 points -

Trouver trois nombres entiers consécutifs tels que la différence entre le carré du plus grand et le produit des deux autres soit égale à 550.

(On pourra noter ces nombres x, x + 1 et x + 2)

On prend les trois nombres consécutifs : x, x + 1 et x + 2

$$(x+2)^2 - x(x+1) = 550$$

 $x^2 + 4x + 4 - x^2 - x = 550$

$$3x = 550 - 4$$

$$3x = 546$$

$$x = \frac{546}{3} = 182$$

Donc les trois nombres consécutifs sont 182, 183 et 184.

Exercice 3 - 2 points -

Dans un lycée, les professeurs de Seconde organisent un voyage de fin d'année ; ils ont loué des cars.

S'ils décident de mettre quarante élèves par car, onze élèves n'ont pas de place. S'ils mettent quarante-trois élèves par car, il reste une place dans un car.

Combien y a-t-il de cars?

Combien y a-t-il d'élèves ?

On pose x le nombre de car

D'après l'énoncé, le nombre d'élèves s'obtient comme 40x + 11 d'après la première possibilité, et comme 43x - 1 d'après la deuxième.

Or le nombre d'élèves à faire voyager est le même

D'où l'équation :
$$40x + 11 = 43x - 1$$

 $40x - 43x = -11 - 1$
 $-3x = -12$
 $x = \frac{12}{3} = 4$

Il y a donc 4 cars.

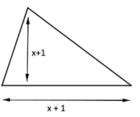
On en déduit qu'il y a 171 élèves car $40 \times 4 + 11 = 171$

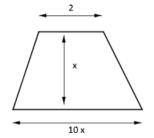
Finalement, il y a 4 cars et 171 élèves.

Exercice 4 - 2 points -

Un géomètre prétend qu'on peut construire un triangle et un trapèze de même aire avec les dimensions suivantes (en cm).

Si le géomètre a raison, pour quelle(s) valeur(s) de x est-ce possible ?





$$\begin{split} A_{triangle} &= \frac{base \times hauteur}{2} = \frac{(x+1)(x+1)}{2} = \frac{x^2 + x + x + 1}{2} = \frac{x^2 + 2x + 1}{2} \\ A_{trapeze} &= \frac{(b+B) \times h}{2} = \frac{(2+10x) \times x}{2} = \frac{2x + 10x^2}{2} \end{split}$$

Alors
$$A_{triangle} = A_{trapeze}$$

$$\frac{x^2 + 2x + 1}{2} = \frac{10x^2 + 2x}{2}$$

$$x^2 + 2x + 1 = 10x^2 + 2x$$

$$0 = 10x^2 - x^2 + 2x - 2x - 1$$

$$9x^2 - 1 = 0$$

$$(3x)^2 - 1 = 0$$

$$(3x - 1)(3x + 1) = 0$$

Alors
$$3x - 1 = 0$$
 ou $3x + 1 = 0$
 $x = \frac{1}{3}$ $x = -\frac{1}{3}$

 $\underline{\text{Comme}} \ x \ \text{est une longueur, elle est possitive}$

<u>Donc</u> le géomètre a raison si $x = \frac{1}{3}$

Exercice 5 - 15 points -

(sur la copie)

Partie A

Soit f une fonction définie représentée par la courbe donnée cidessous.

1. Quel est l'ensemble de définition de la fonction f?

La fonction f est définie sur [-3; 6]

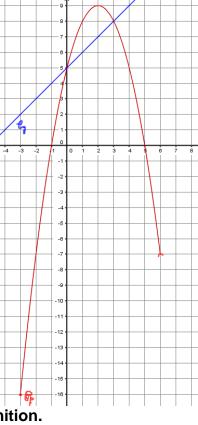
2. a) Lire les images de 1 et -2 par la fonction f.

Par lecture graphique, l'image de 1 est f(1) = 8 et l'image de -2 est f(-2) = -7.

b) Lire les antécédents de 0 et de - 4.

Par lecture graphique, 0 admet deux antécédents : – 1 et 5.

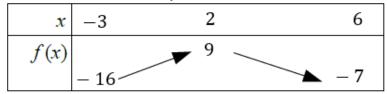
Et -4 admet deux antécédents x_1 et x_2 dont on connaît une valeur approchée : $x_1 \approx -1.6$ et $x_2 \approx 5.6$.



3. a) Dresser le tableau de variation de f sur son ensemble de définition.

La fonction f est croissante sur]-3;2] puis décroissante sur [2;6].

D'où le tableau de variation de f:



b) Donner le maximum de la fonction f. En quelle valeur est-il atteint ?

La fonction f admet un maximum égal à 9, atteint pour x = 2.

4. a) Résoudre graphiquement l'équation f(x) = 8.

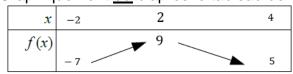
On cherche les abscisses des points de la courbe C_f dont l'ordonnée est égale à 8. On trouve $S = \{1; 3\}$.

b) Résoudre graphiquement l'inéquation $f(x) \ge 5$.

On cherche les abscisses des points de la courbe C_f dont l'ordonnée est supérieure à 5. On trouve, S = [0; 4].

c) Si $x \in [-2; 4]$, donner le meilleur encadrement possible pour f(x).

Graphiquement \underline{ou} d'après le tableau de variation de f limité à cet intervalle :



La fonction f est strictement croissante sur [-2; 2] puis strictement décroissante sur [2; 4].

Elle admet un minimum égal à -7, atteint pour x = -2 et un maximum égal à 9, atteint pour x = 2.

Par conséquent f(x) est compris entre -7 et 9.

Donc pour tout $x \in [-2; 4]: -7 \leqslant f(x) \leqslant 9$

- 5. Soit g définie par g(x) = x + 5.
 - a) Représenter, sur le graphique donné en annexe, la fonction g.

g est une fonction affine, donc sa représentation graphique est une droite D passant par les points : A(0;5) et B(3;8) car g(0) = 0 + 5 = 5 et g(4) = 3 + 5 = 8 Voir graphique.

b) Résoudre graphiquement l'équation f(x) = g(x).

On cherche les abscisses des points d'intersection des courbes C_f et C_g . On trouve $S = \{0; 3\}$.

c) Résoudre graphiquement l'inéquation f(x) < g(x).

On cherche les abscisses des points de la courbe C_f situés en dessous de la courbe C_g . On trouve $S = [-2; 0[\cup]3; -6[$.

Partie B

On donne maintenant l'expression de la fonction dessinée ci-contre par : $f(x) = 9 - (x - 2)^2$.

1. a) Développer et réduire l'expression f(x).

$$f(x) = 9 - (x - 2)^2 = 9 - (x^2 - 4x + 4) = 9 - x^2 + 4x - 4$$

$$f(x) = -x^2 + 4x + 5$$

b) Factoriser l'expression f(x) et montrer que : f(x) = (x + 1)(5 - x).

$$f(x) = 9 - (x - 2)^2 = 3^2 - (x - 2)^2 = (3 - (x - 2))(3 + (x - 2)) = (3 - x + 2)(3 + x - 2)$$

$$f(x) = (-x + 5)(x + 1)$$

2. Calculer f(1) et $f(-\sqrt{3})$.

$$f(1) = (-1+5)(1+1) = 4 \times 2 = 8$$

$$f(-\sqrt{3}) = -(-\sqrt{3})^{2} + 4 \times (-\sqrt{3}) + 5 = -3 - 4\sqrt{3} + 5 = 2 - 4\sqrt{3}$$

3. Déterminer par le calcul les antécédents de 0 par f.

On doit résoudre l'équation f(x) = 0. (-x + 5)(x + 1) = 0

C'est une équation-produit.

$$-x + \dot{5} = 0$$
 ou $x + 1 = 0$
 $x = 5$ ou $x = -1$

Cette équation admet deux solutions - 1 et 5.

<u>Donc</u> 0 admet deux antécédents par la fonction f, qui sont -1 et 5.

Donc $S = \{-1, 5\}$

4. a) Résoudre l'équation f(x) = 5 par le calcul.

On doit résoudre
$$f(x) = 5$$

$$-x^2 + 4x + 5 = 5$$

$$-x^2 + 4x = 0$$

$$x(-x + 4) = 0$$
Alors $x = 0$ ou $-x + 4 = 0$

$$x = 4$$

Donc cette équation admet deux solutions 0 et 2

 $S = \{0 ; 4\}$

b) On rappelle que g(x) = x + 5, résoudre l'équation f(x) = g(x) par le calcul.

On doit résoudre
$$f(x) = g(x)$$

 $-x^2 + 4x + 5 = x + 5$
 $-x^2 + 3x = 0$
 $x(-x + 3) = 0$
Alors $x = 0$ ou $-x + 3 = 0$
 $x = 3$

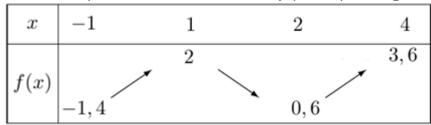
Donc $S = \{0; 3\}$ (On retrouve le résultat du A5b)

Exercice 6 - 3 points -

(sur la copie)

On donne le tableau de variations suivant d'une fonction f.

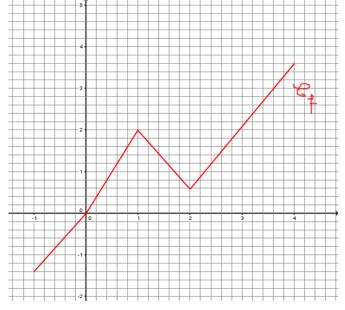
On sait de plus que la courbe représentative de la fonction *f* passe par l'origine du repère.



- 1. Pour chaque situation, entourer la seule bonne réponse parmi les quatre proposées :
 - Le maximum de la fonction f est :
 - □ 1
- □ 2
- **■** 3,6
- **4**
- Le minimum de la fonction f sur l'intervalle [1; 4] est :
 - □ 1,4
- \Box -1
- **1** 0.6
- L'équation f(x) = 0 possède exactement :
 - □ 0 solution
- 1 solution
- □ 2 solutions
- □ 3 solutions

- On veut comparer les images f(1,2) et f(1,5):

- $\Box f(1,2) < f(1,5)$ $\Box f(1,2) = f(1,5)$ $\blacksquare f(1,2) > f(1,5)$ \Box On ne peut rien dire
- 2. Tracer une courbe pouvant représenter la fonction f dans le repère ci-dessous.



Exercice 7 - 4 points -

(sur la copie)

1. Donner l'ensemble de définition D_C de la fonction carré, puis celui de la fonction inverse D_L .

La fonction carrée est définie sur $\mathbb{R} =]-\infty; +\infty[$

La fonction inverse est définie sur $\mathbb{R} * =]-\infty; 0[\cup]0; +\infty[$

2. Quel est le sens de variations de la fonction inverse sur D_c ?

x	$-\infty$	0		$+\infty$
f(x)	/		_	

3. Si $x \in]-5$; -3 [, à quel intervalle appartient x^2 ? (justifier)

On a -5 < x < -3

Alors $(-5)^2 > x^2 > (-3)^2$

car la fonction carrée est décroissante sur $]-\infty$; 0]

Donc $25 > x^2 > 9$

 $x^2 \in [19:25[$ Ou

4. Si $x \in [5; 10[$, à quel intervalle appartient $\frac{1}{x}$? (justifier)

On a
$$5 \le x < 10$$

Alors $\frac{1}{5} \ge \frac{1}{x} > \frac{1}{10}$
Donc $0,2 \ge \frac{1}{x} > 0,1$
Ou $\frac{1}{5} \in [0,1;0,2]$

car la fonction inverse est décroissante sur]0; +∞[

5. Comparer, en justifiant, $(\pi - 2)^2$ et $(\pi + 1)^2$.

On a
$$0 < \pi - 2 < \pi + 1$$

Alors $(\pi - 2)^2 < (\pi + 1)^2$ car la fonction carrée est croissante sur $]-\infty;0]$
Donc $(\pi - 2)^2 < (\pi + 1)^2$

Exercice 8 - 4 points -(sur la copie)

Considérons l'algorithme suivant :

Début algorithme Variables x du type nombre N du type nombre Entrée Saisir x $0 \rightarrow N$ Traitement Tant que $N + 1 \le x$ $faire N + 1 \rightarrow N$	<u> </u>					
x du type nombre N du type nombre Entrée Saisir x $0 \rightarrow N$ Traitement Tant que $N + 1 \le x$ $ faire N + 1 \rightarrow N $	Débu	Début algorithme				
N du type nombre Entrée Saisir x $0 \rightarrow N$ Traitement Tant que $N + 1 \le x$ faire $N + 1 \rightarrow N$	Varia	bles				
Entrée Saisir x $0 \rightarrow N$ Traitement Tant que $N + 1 \le x$ faire $N + 1 \rightarrow N$		x du type nombre				
Saisir x $0 \rightarrow N$ Traitement Tant que $N + 1 \le x$ faire $N + 1 \rightarrow N$		N du type nombre				
	Entré	ee				
Traitement Tant que $N + 1 \le x$ faire $N + 1 \rightarrow N$		Saisir x				
Tant que $N + 1 \le x$ faire $N + 1 \rightarrow N$		$0 \rightarrow N$				
faire $N + 1 \rightarrow N$	Traitement					
		Tant que <i>N</i> + 1 ≤ x				
l le = ;		faire $N + 1 \rightarrow N$				
FinTant						
Afficher N						
Fin algorithme	Fin a	lgorithme				

1. On choisit pour valeur initiale x = 4.8. Compléter le tableau ci-dessous :

Numéro	de			Arrêt de la boucle
passage de	la	passage dans la boucle	passage dans la boucle	conditionnelle (oui/non)
boucle				
1		0	1	non
2		1	2	non
3		2	3	non
4		3	4	non
5		4	on ne passe pas dans la boucle	oui

Combien de passages dans la boucle conditionnelle ont été nécessaires pour l'arrêt de l'algorithme ? 4 passages sont nécessaires

2. Recommencer l'algorithme pour x = 3.

<u> </u>	. 4.90.11.	2041 % 81		
Numéro	de	Valeur de N avant le	Valeur de N après le	Arrêt de la boucle
passage	de la	passage dans la boucle	passage dans la boucle	conditionnelle (oui/non)
boucle				
1		0	1	non
2		1	2	non
3		2	3	non
4		3	on ne passe pas dans la boucle	oui

on trouve N=33. Que donne l'algorithme pour x = 3.5 ?

4. Le nombre N obtenu est appelé la partie entière de x, noté Ent(x).

On a donc:
$$Ent(4,8) = 4$$

$$Ent(3) = 3$$